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Abstract—In this paper we present the design of Name-based
Access Control (NAC) scheme, which supports data confiden-
tiality and access control in Named Data Networking (NDN)
architecture by encrypting content at the time of production,
and by automating the distribution of encryption and decryp-
tion keys. NAC achieves the above design goals by leveraging
specially crafted NDN naming conventions to define and enforce
access control policies, and to automate the cryptographic key
management. The paper also explains how NDN’s hierarchically
structured namespace allows NAC to support fine-grained access
control policies, and how NDN’s Interest-Data exchange can help
NAC to function in case of intermittent connectivity. Moreover,
we show that NAC design can be further extended to support
Attribute-based Encryption (ABE), which supports access control
with additional levels of flexibility and scalability.

Index Terms—Named Data Networking, Security, Access Con-
trol

I. INTRODUCTION

Named Data Networking (NDN) [1], a proposed Internet
architecture, enables applications to retrieve desired data by
names at the network layer. This is a fundamental departure
from IP networking where one retrieves data by using the
addresses of data containers. In addition to enabling efficient
and robust data dissemination, NDN also introduces a data-
centric security model by securing data directly [2], enabling
end-to-end security regardless of the security, or lack of it, of
communication channels and any other intermediaries.

A common requirement of distributed applications is an
effective and usable access control solution to ensure that
only authorized users and applications can have access to
certain contents. Numerous access control approaches [3]-[7]
have been proposed; however, implementing these solutions
over TCP/IP protocol stack requires non-trivial and error-prone
configurations at the network layer for content retrieval and
access key distribution. Furthermore, utilizing third-party ser-
vices like DNS for key storage and distribution also increases
the attack surface of the overall system.

This paper describes the Name-based Access Control (NAC)
scheme, which provides content confidentiality and access
control in an NDN network. NAC is built on a combination
of symmetric and asymmetric cryptography algorithms, and
utilizes NDN’s data-centric security and naming convention
to automate data access control. Throughout the paper, we
show that NAC scheme has following desirable properties:
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(1) NAC leverages a specially crafted NDN naming conven-
tion to name cryptographic keys, enabling them to be
retrieved automatically.

(i) NAC supports fine-grained access control through simple
namespace design.

(iii) NAC utilizes NDN’s stateful forwarding plane and in-
network storage to enable resilient communications in
face of intermittent connectivity.

We describe two implementations [8], [9] of the NAC
scheme called NAC and NAC-ABE. The two share the key
properties, but differ in the asymmetric encryption algorithms
used: the former uses RSA and the latter Ciphertext-Policy
Attribute-based Encryption (CP-ABE) [6]. Utilizing Attribute-
based Encryption, NAC-ABE supports data access control with
additional levels of flexibility and scalability.

With the assumption that readers are familiar with the basic
concepts of NDN, which are also described in a companion
paper [10], we organize this paper as follows. We describe,
in Section III, a simple battlefield application scenario, and
introduce the assumptions and goals of NAC, together with
a brief explanation of how NAC works in Section II. We
introduce our implementation of NAC-ABE in Section IV. In
Section V, we explain how NAC scheme provides automatic
key distribution and fine-grained access control, and how NDN
enables NAC to operate with intermittent connectivity. We
evaluate the security and performance of the NAC design in
Sections VI and VII. We compare the access control system
over TCP/IP and NDN, discuss the open issues of our design
in Section VIII, and conclude the work in Section IX.

II. EXAMPLE SCENARIO

To facilitate explanation and discussion in the rest of this pa-
per, we first introduce a typical battlefield application scenario
(see Fig. 1). In a modern battlefield, there could be multiple
types of entities that need to work in unison and coordinate
together through an intermittent network with relatively high
packet loss rate. One of the growing requirements of such
military communications is strong confidentiality and effective
access control.

As shown in the Fig. 1, there are three types of entities
in our network scenario: (i) Command Center (“/military
/control”) that determines the access privileges of partic-
ipants in a system. (ii) Units (“/military/air/aircraft(A
/B)]1” and “/military/ground/squad(4/B/C)”) that commu-
nicate with the command center and other units. For example,
an aircraft may receive commands from the command center
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Fig. 1. A battlefield communication scenario

and provide surveillance information to a squad. (iii) For-
warders (Satellite, Aircraft Gateway, and Squad Gateway)
that forward packets among units and command center. For
example, satellites, aircraft gateways, and squad gateways may
form a broadcast connectivity, and aid in forwarding packets.

This battlefield scenario requires that only authorized enti-
ties can access certain pieces of data. As an example, when the
command center sends a command intended to only squad A,
only soldiers from squad A could be able to read the content;
all the other entities such as aircraft A and squad B should not
be able to see the content even if they have retrieved the Data
packets. In the rest of the paper, we will use this scenario to
illustrate how NAC aids in providing effective communication
confidentiality and effective access control.

III. NAME-BASED ACCESS CONTROL
A. Assumptions and Goals

The design of NAC assumes that proper trust relationships
among entities in the system have already been established. To
be more specific, (i) each entity in the system has its own pub-
lic/private key pair, and (ii) each entity is able to authenticate
the Data packets produced by others through digital signature
validation. For example, a squad is able to authenticate the
Data packet received from the command center. This could be
realized by security bootstrapping process as described in [2].

Unlike traditional network-layer access control that focuses
on the access to medium, NAC aims to control the access to the
content of Data packets with several additional goals: (i) access
control can be done at fine granularities; (ii) enforcement of
the access control is automated as much as possible; (iii) the
system is robust against the intermittent network connectivity.

B. Design Overview

NAC achieves aforementioned goals by using a combination
of symmetric and asymmetric keys (see Fig. 2) and utilizing
NDN’s structured, semantically meaningful naming to express
the access policy and granularity. In NAC design, there is
an access manager (e.g., command center), who defines the
access control policies in a given system. The access man-
ager publishes its access control policies as a list of named
public and private key pairs, called KEK (key-encryption
key, public key) and KDK (key-decryption key, private key).

Leveraging the naming convention, a KEK’s name indicates
the granularity (i.e., content name prefix) under which the
Data packets should be encrypted with this KEK. On the
other hand, the KDK name encodes both the name of the
authorized granularity and name of the consumer to whom
the access is granted. To control the access rights, the access
manager distributes KDK (key-decryption key) to authorized
decryptors by publishing KDK Data packets encrypted using
decryptors’ public keys. Encryptors are entities that publish
encrypted content and they retrieve the named KEKs as the
access control policy. This named policy can be configured or
inferred from configuration and data name (see Section V-A
for an example of it). Content is not directly encrypted using
the KEK, but a symmetric content key, called the Content Key
(CK); CK will then be encrypted using the KEK. As a result,
an encryption (or decryption) key chain can be established
from an encryptor to a decryptor under the control of the
access manager.
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Fig. 2. NAC Scheme

In NAC, the access manager, encryptor, and decryptor are
different in terms of their function. In practice, they can be
a single entity based on specific application scenarios. For
instance, in our battlefield scenario, the command center is
the access manager, encryptor (when sending commands to
others), and decryptor (for received responses).

NAC achieves fine-grained access control by requiring the
encryptor to follow the KEK name to encrypt content. The
more specific the KEK name is, the fewer Data packets
can be decrypted using the corresponding KDK. NAC also
allows access manager to control the access through KDK
distribution. The more KDKSs a decryptor can obtain, the more
Data packets it can access.

NAC achieves automation of access control by publishing
access control policy (named KEKSs) and decryption keys
(CKs and KDKs) as normal NDN Data packets. As long
as the named KEKs have been published in the network,
encryptors can automatically retrieve them by name to encrypt
content/CK properly. The access manager and encryptors also
publish the KDKs/CKs respectively, so that decryptors can
follow the key names encoded in the encrypted Data packets
to retrieve decryption keys and construct the decryption key
chain automatically.

Since all the keys are just normal NDN Data packets, the
data-centric security model of NDN allows the access manager
and encryptors to freely distribute these Data packets within
the network even to non-trusted data repository or in-network



caches. NDN’s name-based retrieval ensures that as long as
there is a copy for those keys in the network, encryptors and
decryptors can always retrieve them even with intermittent
connectivity.

C. NAC Naming Conventions

All the keys in NAC are named under a specific naming
convention. As further discussed in Section V, NAC leverages
naming conventions to realize automatic key distribution and
fine granularity of data confidentiality and access control.

1) Key Encryption Key (KEK): Encryptors need to fetch
KEK to encrypt the content. NAC defines the naming conven-
tion for KEK and KEK Data packet.

KEK Name = “/<access manager prefix>/NAC
/<granularity>/KEK/<key-id>"

where the access manager indicates the producer of the KEK,
the granularity is the name prefix of the data that is being
produced by the encryptor, and the key-id is the unique
identifier of the key.

2) Key Decryption Key (KDK): In NAC, the KDK follows
the same convention as KEK except the name component
“KEK”:

KDK Name = “/<access manager prefix>/NAC
/<granularity>/KDK/<key-id>"

Because the KDK is encrypted for each authorized decryptor,
the KDK Data packet has additional components:

KDK Data Name = “/<access manager prefix>/NAC
/<granularity>/KDK/<key-id>/ENCRYPTED-BY/<decryptor
prefix>/KEY/<decryptor key-id>"

where the key-id is the same as its corresponding KEK, and
key identified by decryptor key-id is the decryptor’s key that
is used to encrypt the KDK.

3) Content Key (CK): CK name and CK Data packet names
follow conventions similar to KDK. The CK Data packet name
follows the naming convention:

CK Name = “/<producer prefix>/CK/<key-id>"
CK Data Name = “/<producer prefix>/CK/<key-id>
/ENCRYPTED-BY/<access manager prefix>/NAC
/<granularity>/KEK/<key-id>"

D. NAC Scheme

The main workflow of NAC is as depicted in Fig. 2.

1) Key Generation and Provision: The access manager will
generate corresponding KDK and KEK pairs as in the access
control polices. It then directly publishes the KEK (in plain-
text) Data packets. The access manager will encrypt the KDK
for each authorized decryptor to ascertain that only intended
decryptors with necessary access rights and permissions can
get the KDK for data under a data prefix specified by the
access policies. Decision on how to grant access is at the sole
discretion of the access manager and is outside the scope of
NAC design.

When the connection is not stable or the access manager
is supposed to go offline after the bootstrapping process for
stronger security, the access managers can simply publish
KEK and KDKs to in-network data repositories, so that the
encryptors and authorized decryptors can continue to work
without communicating with the access manager.

2) Key Delivery: KEK and KDK are all named and just like
any other NDN Data packet, can directly be fetched through
Interest packets carrying the corresponding key names. Both
KEK and KDK names can directly convey (i) who are sup-
posed to use the key and (ii) for which set of data the key
should be used. In this way, encryptors and decryptors can
generate the Interests automatically by following the naming
convention (Section III-C) to fetch KEK and KDK, while the
key names allow the decryptors to learn the granularity of the
access control.

3) Content Encryption: Encryptors utilize the KEK and
symmetric encryption mechanisms like AES-CBC [11] to
produce encrypted content. The symmetric encryption key is
called CK (content key) in NAC. After fetching the KEK from
the access manager or data repositories, an encryptor learns
for which granularity the KEK should be used by checking
the KEK name. Then it encrypts the data in this granularity
with a CK and encrypts the CK with the KEK. The encryptor
will wrap the encrypted content with the CK name into a
Data packet and the encrypted CK to another Data packet and
publish them. Based on the application needs, the CK can also
be carried with the ciphertext in one Data packet.

4) Content Decryption: The main purpose of content de-
cryption is for authorized decryptors to use the proper KDK
to decrypt the CK and then decrypt the encrypted content.
After fetching the content Data packets, a decryptor can learn
which CK should be used for decryption. If CK is not with
the content, the decryptor fetches the corresponding CK Data
packet. After obtaining the CK, the decryptor uses its own
KDK to decrypt the CK. When the decryptor does not have
the KDK or the key is outdated, the decryptor can learn the
KDK name from the CK Data packet and generate an Interest
to fetch the KDK from the network; more details about this
can be found in Section V-A.

5) Access Revocation: In NAC, the access rights are sup-
posed to be short-lived, i.e., to maintain continued access to
the content, the access manager needs to periodically update
the KEK and KDK pairs. Such periodic KEK and KDK
renewals are transparent to decryptors because decryptors can
automatically follow the naming convention to fetch the new
KDK when needed instead of periodically querying for the
new KDK. The periodic key serves as the baseline of access
revocation: when a user is reported to be compromised, the
access manager should not grant renewed access rights to
the user. When urgency is the main concern of the access
control system, the access manager should send notification
to encryptors to use new KEK and generate new CK; the
decryptor may also need to re-encrypt all the existing data (i.e.,
create new versions of the previously created Data packets)
with new CK(s) and KEKs to prevent information leakage



to and through compromised users. Note that this does not
remove access to any previously published data residing inside
in-network caches, as encryptors cannot control state in the
distributed system.

IV. NAC BASED ON ATTRIBUTE-BASED ENCRYPTION

We implemented the first prototype of NAC using RSA,
but NAC-RSA (or simply referred to as NAC) runs into
scalability issues as the number of decryptors increases. In the
basic NAC design, access managers directly manage the data
access, encrypting KDKs for all authorized decryptors for each
granularities. For example, assume that there are n soldiers in
the battlefield and m authorized granularities. To grant each
soldier the access rights to m granularities, each user needs to
obtain O(m) KDKs, thus the access manager needs to generate
O(m) key pairs and produce O(m x n) KDK Data packets.
When suffixes are added to achieve fine-granularity, the value
m could become much larger as the number of suffix compo-
nents get added. For example, the granularity “/military/air
/aircraftA” contains two sub-granularities “/military/air
/aircraftA/north” and “/military/air/aircraftA/south”.
In this case, the encryptor will create two CKs for the two sub-
granularities and encrypt each CK with corresponding KEK,
thus decryptors authorized to access the parent granularity
need two KDKs to obtain the access rights.

Attribute-based encryption is a type of public-key encryp-
tion scheme [12]. In Ciphertext-Policy Attribute-Based En-
cryption (CP-ABE) [6], data is encrypted based on an access
tree that describes authorized users in terms of attributes, and
the users’ secret keys are generated over a set of attributes. CP-
ABE makes it possible that the user with the set of attributes
which satisfy the encryption attribute policy can decrypt the
ciphertext. As a simple example of CP-ABE, assume a soldier
has the attribute set {“Soldier”, “SquadA”}, the soldier can
decrypt the content with the access policy “Soldier AND
SquadA”, but cannot decrypt another ciphertext associated
with the policy “General AND SquadA”.

In this section, we explain how to utilize CP-ABE to realize
the NAC and achieve better scalability, and on the other hand,
show how NAC scheme can help automate the key delivery
in CP-ABE.

A. NAC-ABE with Better Scalability

We implemented NAC with CP-ABE in our second pro-
totype. In NAC-ABE, attribute authority takes responsibility
of issuing attributes to the decryptors, and in practice, the
attribute authority and access manager can be in the same
node. In our battlefield example, the command center plays
the additional role of attribute authority.

In NAC-ABE, as shown in Fig. 3, KEK is an attribute policy
while the decryption key is a set of attributes that can satisfy
the attribute policy. Different from NAC based on RSA, the
encryptor in NAC-ABE encrypts the CK using attribute-based
and decryptors decrypt the CK with their attributes.

The attribute authority serves as one level of indirection
that allows the system to simply define attributes needed to
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Fig. 3. NAC-ABE Scheme

access their data, and decryptors to have sets of attributes
to obtain access rights. After defining the attributes in the
system, there is no need to generate decryption keys for each
granularity. Assuming there are n soldiers, m granularities and
a different attributes, the access manager needs to create ABE
keys for O(a) times. Notably, a is much smaller than m: the
access controller can combine a small number of attributes
with different logic gates (e.g., AND, OR, NOT) to make
attribute policies for all the granularities. Since a decryptor’s
attributes can be issued in one time, the access manager only
needs to generate O(n) packets. In practice, this process can
be greatly improved by issuing attributes in groups or along
with identity certificates.

Confirming to the access revocation design of NAC scheme
(Section III-D5), in NAC-ABE, attributes issued to decryptors
are expected to have limited validity period. For example,
the attribute "SquadA" may have a name like “SquadA-
July8-2018", indicating that the attributes have effect only
for a certain period of time; and based on access manager’s
requirements, the policy can rotate to a “fresh” set of attributes.

B. Naming Convention of NAC-ABE

The naming convention in NAC-ABE follows general NAC
conventions described in Section III-C with several exceptions.
The KEK name follows the same convention but the key-id
is no longer a unique identifier but an attribute policy that
is used for ABE-based encryption. For example, as shown in
Fig. 4, the key-id is “(Soldier AND SquadA) OR General".
Through the name, the decryptor learns which attribute policy
should be used to encrypt the data in granularity “/military
/air/aircrafthd”.

KEK Interest
KEK Data

/military/control/NAC/military/air/aircraftA/KEK

/military/control/NAC/military/air/aircraftA/KEK
/(“Soldier” AND “SquadA”) OR “General”

(“Soldier” AND “SquadA”) OR “General”

A2 CK A CcK

Fig. 4. An example of KEK in NAC-ABE

When a decryptor needs to fetch an authorized attribute
from the attribute authority, the decryptor can generate the
attribute Interest packet by following the convention.

Attribute Interest Name = “/<attribute authority prefix>
/ATTRIBUTE/<attribute name>/ENCRYPTED-BY/<decryptor
prefix>/KEY/<decryptor key id>"



In NAC-ABE, attributes are expected to be provisioned before
the system starts.

V. PROPERTIES OF NAC AND NAC-ABE
A. Automatic Key Delivery

1) Automatic KEK Retrieval: Given that access manager’s
prefix is well-known in an access control system and an
encryptor knows' the granularity (name prefix) of its produced
data, the encryptor can construct Interest packets for KEK
automatically.

For example, assuming aircraft A (Figure 1) produces
Data packets under the prefix “/military/air/aircraftd”
and the access manager (i.e., the command center) has the
prefix “/military/control”, the user can automatically gen-
erate the Interest packet by appending the expected data
prefix to the access manager’s prefix. The Interest will have
the name “/military/control/NAC/military/air/aircraftA
/KEK”. After sending out the Interest packet, a KEK Data
packet with a key identifier called key-id will be fetched. The
key-id is either unique identifier for RSA or an attribute policy
string for CP-ABE.

With the naming convention of KEK, there is no need of
manual configuration of keys to encryptors, thus improving
the usability of the system. At the same time, named data can
be fetched directly by its name, thus there is no need of name
services (e.g., DNS) in NAC or NAC-ABE

2) Automatic CK and KDK Retrieval: The naming conven-
tion also helps decryptors to collect sufficient keys to finish
the decryption. At the time when the encryptor produces the
encrypted content Data packets, the encryptor will explicitly
put the CK name into the content. After getting the content
Data packets, the decryptor can extract the CK name from
the Data packet and the CK name can directly be used as the
Interest packet to fetch the CK Data packets. Similarly, the
fetched CK Data packet name can directly convey the KEK
name. Following the naming convention, a decryptor in NAC
can simply flip the “KEK” to “KDK” and append its decryptor
identity to construct an Interest packet for KDK.

Content Data /military/air/aircraftA/info -~~~

Extract CK name
} from Data Content

/military/air/aircraftA/CK/<CK-id>
/military/air/aircraftA/CK/<CK-id>
/ENCRYPTED-BY
/military/control/NAC/military/air/aircraftA/KEK/<Key-id>
\\, Extract KDK name
+ from Data name
/military/control/NAC/military/air/aircraftA/KDK/<Key-id>
/ENCRYPTED-BY
/militay/ground/squadA/soldier1/KEY/<Key-id>
/military/control/NAC/military/air/aircraftA/KDK/<Key-id>
/ENCRYPTED-BY
/militay/ground/squadA/soldier1/KEY/<Key-id>

CK Interest
CK Data

KDK Interest

KDK Data

Fig. 5. An example of content decryption in NAC

I'The knowledge can be configured, defined by a schema, or inferred from
the data name. Currently, NAC does not define any specific mechanics for
that.

The naming conventions of CK and KDK allow automation
of the whole process of content decryption and related key
retrieval. For example, in NAC, as shown in Figure 5, a decryp-
tor with name *“/military/ground/squadA/soldier1” wants
to decrypt the data “/military/air/aircraftA/info” sent
from the aircraft A. By checking the CK field of the content
Data packet, the decryptor learns the CK name “/military
/air/aircraftA/CK/<CK-id>” and uses it to fetch CK Data.
From the name of CK Data packet, the decryptor can directly
extract the KEK name “/military/control/NAC/military
/air/aircraftA/KEK/<Key-id>". By changing the component
“KEK” to “KDK” and appending its name °/ENCRYPTED-BY
/military/ground/squadA/soldier1/KEY/<Key-id>", the de-
cryptor can send out the KDK Interest and fetch the corre-
sponding KDK that is assigned to this decryptor.

Content Data /military/air/aircraftA/info ---~. Extract CK name

; from Data Content

CK Interest
CK Data

/military/air/aircraftA/CK/<CK-id>

/military/air/aircraftA/CK/<CK-id>
/ENCRYPTED-BY
/military/control/NAC/military/air/aircraftA/KEK/
(“Soldier” AND “Squad A”) or “General”

Fig. 6. An example of content decryption in NAC-ABE

Similarly, in NAC-ABE, for example, as shown in Fig-
ure 6, a decryptor wants to decrypt the content Data packet
“/military/air/aircraftA/info”. The decryptor first fetches
the CK back. As indicated by the CK name, the CK is
encrypted by the attribute policy “(Soldier AND SquadA) or
General," which means that soldiers from squad A or the gen-
eral can access the content. The soldier then checks whether
his existing attributes are sufficient enough, i.e., whether he has
attribute “SquadA" and “Soldier" or the attribute "General."

B. Fine-Grained Access Control

In NDN, data is named with a structured name. This allows
us to group data with the same properties into the same
namespace. As an illustrative example, Figure 1 shows the
naming prefix for the battlefield application scenario. Under
the prefix “/military”, the system allocates a sub-namespace
“/military/ground” for the data produced by the squads
as the ground force; under the “/military/ground”, there
are three sub-namespaces ‘‘/military/ground/squad(A/B
/C)” representing the data produced by each squad. Further
sub-namespaces can be assigned for finer data production
control. In NAC and NAC-ABE, the access manager will
produce KEK with the granularity to be the content prefix
and KDK with the decryptor name to be the authorized
decryptors. For example, to grant a user “/military/ground
/squadA/soldier1” in squad A to access the content produced
by a user “/military/air/aircraftA”, the access manager
can produce the KEK with name “/military/control/NAC
/military/air/aircraftA/KEK/<key-id1>” and KDK with
name “/military/control/NAC/military/air/aircraftA
/KDK/<key-id1>/ENCRPYPTED-BY/military/ground/squadA
/soldier1/KEY/<key-id2>"



In NAC-ABE, besides utilizing structured name, the sys-
tem can also achieve fine-grained access control by defining
attributes based on the granularity needs, enabling the access
manager to make attribute policies in a more delicate way.

Granularity 1: /military/air/aircraftA
Granularity 2: /military/air/aircraftA/north

|

|

I /military/air
: /aircraft1
|

|

Fig. 7. Fine granularity by naming data

An access manager is able to realize fine-grained access
control with NAC and NAC-ABE by restricting the autho-
rized granularity (data name prefix) of the KEK. In NAC,
for example, KEK “/military/control/NAC/military/air
/aircraft1/KEK/<key-id1>” will be used to encrypt the data
produced under “/military/air/aircraftl”, as shown in
the Figure 7. By adding the suffix “/north” to granularity
component of the KEK, the granularity of the KEK is the
data produced only in northern battlefield. Data packet pro-
duced under different prefix, e.g., “/military/air/aircraftl
/south”, cannot be decrypted by the decryptors who are
granted the access to “/military/air/aircraftl/north”.

C. Support for Intermittent Connectivity

Different from the channel-based communication model in
TCP/IP, NDN’s Interest-Data packet exchange and stateful
forwarding [13] survive when the connectivity is disrupted.
In NDN, when a link of the communication path is down,
the Data packets can be cached along the path and fetched
by future Interests. Using the scenario shown in Figure 1,
let us assume that a soldier sent two Interest packets for the
encrypted content produced by aircraft A and a KDK from
the command center. If the link between the aircraft gateway
and the squad gateway went down before the replied Data
packets arrive at the aircraft gateway, two Data packets will
still be cached by the aircraft gateway. Later (after a timeout
or when connectivity is restored) the soldier can re-express
Interests, which would fetch the content directly from the
aircraft gateway instead of from the command center and the
aircraft A.

Deploying dedicated large cache storage on the forwarders
with intermittent links can greatly improve the data availabil-
ity. Importantly, such mechanisms do not require application
semantics, instead, they are naturally supported by NDN at
the network layer.

VI. SECURITY ASSESSMENT

In this paper, we focus on threats that are specific to
communication confidentiality and access control and in this
section, we explain how NAC mitigates these potential threats.
We also show that some threats including man-in-the-middle

(MITM) and denial-of-service (DoS) are natively mitigated
by NDN. We leave threats specific to particular cryptography
algorithms, e.g., collusion attack in attribute-based encryption,
outside the scope of this paper.

A. Threat Mitigation by NAC

a) Eavesdropping: Attackers may sniff on the broadcast
media or retrieve published Data packets from in-network
caches. However, since all the sensitive content (e.g., data,
CK, KDK) in NAC are encrypted, even though attackers can
collect these Data packets from the broadcast media or cache,
the attackers cannot make sense of these ciphertext.

b) Device Compromise: Attackers may compromise in-
dividual devices to gain the data access that is granted to
the unit. There are no means to stop a compromised device
from accessing the previously published content, but an access
control scheme is supposed to revoke the device’s privilege
as soon as possible in order to prevent further leak of data.
NAC utilizes the short-lived KEK KDK pairs to reduce the
information leakage in cases of compromised devices. As
mentioned in Section III-D5, based on application’s needs,
the access manager can also initiatively notify encryptors to
re-encrypt the content using the new keys before the old keys
get expired.

B. Threat Mitigation by NDN

NAC is based on NDN, and we argue that NDN itself
helps in mitigating MITM and DoS attacks. In NDN, the Data
packets directly protected by applications: producers sign each
Data packet and consumers verify the signature to ensure the
integrity and authenticity.

a) Man-in-the-Middle Attack: In NAC, when attackers
perform Man-in-the-Middle (MITM) attack and modify the
KDK packets, the decryptors will notice the change by veri-
fying the signature.

b) Denial-of-Service Attack: Since all the content Data
packets and key Data packets are published in the NDN
network, these packets can be cached in cache or dedicated
data repositories. When attackers flood the Interest packets
for the content or keys, the cache can stop these Interests. If
attackers use forged Interest packets (e.g., append randomness
to a valid prefix), mechanism proposed and mentioned in [14]-
[18] can mitigate such attacks.

VII. PERFORMANCE EVALUATION

We evaluate the performance of NAC scheme in terms of
packet efficiency and cryptographic operations. The evaluation
is aimed to offer quantitative analysis of our system for NAC
users so that the system can fit into their specific hardware
and network environment.

A. Bandwidth and Packet Size

In this section, we set the content size (plaintext) to be
1024 bits and the name of the Data packet is “/producer
/datasetl/example/datal”. In NAC, we let the granularity
to be “/producer/datasetl/example”. The size value of all



the essential Data packets needed in the NAC is shown in
Table I.

TABLE I
NAC PACKET SIZE (SIGNATURE TYPE: SHA256ECDSA)
Data Type Data Size Length Breakdown (bit)
Encrypted . Name | Data Content | Sig Value
1231 bits
Content Data 38 1075 79
Name | Data Content | Sig Value
CK Data 506 bits
106 282 72
Name | Data Content | Sig Value
KEK Data 493 bits
72 294 72
Name | Data Content | Sig Value
KDK Data 1697 bits
83 1488 72

We use the same content Data name and granularity in NAC-
ABE and have the consumer to obtain 10 attributes: “attrl" to
“attr10". The producer encrypts the 1024 bits content with
policy “( attr]l and attr2 ) or attr3". All the packet size and the
breakdown are shown in Table II.

TABLE I
NAC-ABE PACKET SIZE (SIGNATURE TYPE: SHA256ECDSA)
Data Type Data Size Length Breakdown (bit)
Name | Data Content | Sig Value
conorypted | 1229 bits
ontent Data 38 1047 72
Name | Data Content | Sig Value
CK Data 1012 bits
54 840 72
Name | Data Content | Sig Value
KEK Data 195 bits
67 0 72
Name | Data Content | Sig Value
KDK Data 3605 bits
343 3136 72

B. Cryptographic Operation Evaluation

Assuming we have n consumer and m granularities in
the system, there are totally x content Data packets (each
granularity has the same number of Data packets) that will
be controlled by the access controller. In NAC, we let each
decryptor has the access right to all x content Data packets. In
NAC-ABE, we assume there are totally a attributes and each
decryptor has all the attributes. The cryptographic operations
are listed as Table III.

C. Automated Key Distribution

In access control system over TCP/IP, to achieve key distri-
bution, the network configuration (e.g., [P address, DNS name)
or the equivalent service invocation (e.g., database query) is
linear to the number of keys in the system. In contrast, the
network configuration for key delivery in NAC is independent
of the number of keys.

TABLE III
CRYPTOGRAPHIC OPERATIONS IN NAC SCHEME
Role in NAC NAC (RSA) NAC.ABE
Scheme
Access | RSA Key Gen:m CPABE Key Gen: a
Controller | ROA Enc: mxn RSA Enc: axn*
AES Enc: mxn AES Enc: axn”
Encryotor | ECDSA Sign: x ECDSA Sign: x
(Prodyu%er) RSA Enc: m CPABE Enc: m
AES Enc: x AES Enc: x
Decryptor ECDSA Verify: x ECDSA Sign: x
(Congquer) RSA Dec: m CPABE Dec: m
AES Dec: x AES Dec: x

*: axn can be improved when attributes are distributed in smarter way

VIII. DISCUSSION
A. Access Control System over TCP/IP and NDN

Today’s content sharing applications, by and large, rely on
a third party to host (e.g., cloud server) their content, and
the security in content sharing is provided through encrypted
channels like IPsec [19], TLS [20], QUIC [21], etc. However
these channels are not directly between content producers and
consumers, but between producers and host, and host and
consumers. This practice fails to provide end-to-end confiden-
tiality because it allows a third party, the content host, to see
the shared content in plain text, leading to potential privacy
concerns and liability on the content hosts. Furthermore,
protected network channels do not directly translate to data
confidentiality—data could have been altered before entering
the channel and lose confidentiality after it leaves the channel.

To achieve true end-to-end confidentiality and access con-
trol, a security system is supposed to decouple the content
confidentiality from any hosting party by securing the content
directly. More specifically, a content producer should encrypt
content at the time of production, then it can control the
sharing of its content by managing the distribution of the cor-
responding decryption keys. In NDN, data is directly protected
by the producer at the time of creation, conforming to the idea
of data-centric confidentiality.

Regarding the network layer communication, TCP/IP re-
quires both sides of the channel online to setup the commu-
nication channel, which does not fit when the connectivity is
intermittent and there is a possibility of high packet loss rate,
e.g., in battlefield. In NDN, the Interest-Data exchange model
survives when the connectivity is in poor condition. Utilizing
the in-network caches and dedicated data repositories, NDN
provides better data availability compared to connection-based
communication. Therefore, NAC fits more when the underly-
ing network condition is unstable, e.g., a battlefield.

B. Name Confidentiality

In NDN, data is requested by names but the name itself
may reveal sensitive information to some extent. For exam-
ple, a data name “/military/air/aircraftA/north” conveys
the information that the content may be related to northern



battlefield and produced by an aircraft. To prevent the in-
formation leakage from the data name, the system can hide
the Data packet name by obscuring it, e.g., with a hash
function. As pointed by some papers [22], [23], even with
proper name encryption/hash, the attackers can still infer
some information by analyzing the traffic pattern and other
characteristics. However, we argue that such analysis on the
traffic is considered to be difficult and time-consuming, and
is less harmful compared with unauthorized access and other
issues caused by connection-based confidentiality and extra
configuration (e.g., which user has which access rights, DNS,
1P, etc).

C. Performance and Energy Consumption

NAC requires the access manager to generate asymmetric
key pairs and encryptors/decryptors to perform both symmetric
and asymmetric encryption/decryption operations. These cryp-
tographic operations are considered to be expensive [24], [25],
especially for constrained devices, e.g., [oT devices and mobile
devices. NAC does not help in improving the efficiency of
the cryptography algorithms but helps to simplify the system
realization by automatic key delivery and fine-grained control
by names. Compared to the existing session-based security
solution (e.g., IPsec, TLS, QUIC), NAC can be engineered to
consume similar amounts of energy. For example, the same
CK can be re-used to encrypt large datasets that are subject
to the same access policy.

IX. CONCLUSION

Content-based access control model provides a new per-
spective for end-to-end confidentiality. By requiring content
encryption at the time of production, the model minimizes the
dependency on any intermediate device for access control. This
model naturally fits into the data-centric architecture, such as
NDN. In this paper, we present NAC to provide effective data
confidentiality and access control over NDN.

Our work shows that NDN’s named data enables NAC to
work in a more efficient yet simple way. (i) The structured
namespace of NDN can convey rich contextual information
about access control; by defining proper naming conventions
for encryption/decryption keys, one conveys access control
policies clearly at a fine granularity. (ii) Well-designed naming
conventions can significantly facilitate key distribution in the
access control system and thus minimize the manual configu-
ration at the network layer. (iii) NDN’s data-centric commu-
nication model enables NAC to work even with intermittent
connectivity.
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